Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water.
نویسندگان
چکیده
Norwalk virus and other human caliciviruses (noroviruses) are major agents of gastroenteritis, and water is a major route of their transmission. In an effort to control Norwalk virus in drinking water, Norwalk virus reduction by bench-scale ozone disinfection was determined using quantitative reverse transcription (RT)-PCR for virus assays. Two other enteric viruses, poliovirus 1 and coliphage MS2, were included for comparison, and their reductions were assayed by infectivity assays as well as by RT-PCR. Virus reductions by ozone were determined using a dose of 0.37 mg of ozone/liter at pH 7 and 5 degrees C for up to 5 min. Based on two RT-PCR assays, the reductions of Norwalk virus were >3 log(10) within a contact time of 10 s, and these were similar to the reductions of the other two viruses determined by the same assay methods. Also, the virus reductions detected by RT-PCR assays were similar to those detected by infectivity assays, indicating that the RT-PCR assay is a reliable surrogate assay for both culturable and nonculturable viruses disinfected with ozone. Overall, the results of this study indicate that Norwalk virus as well as other enteric viruses can be reduced rapidly and extensively by ozone disinfection and that RT-PCR is a useful surrogate assay for both culturable and nonculturable viruses disinfected with ozone.
منابع مشابه
Inactivation of norovirus by chlorine disinfection of water.
In an effort to validate previous research suggesting remarkable resistance of norovirus to free chlorine disinfection, we characterized the disinfection response of purified and dispersed Norwalk virus (NV) by bench-scale free chlorine disinfection using RT-PCR for virus assays. The inactivation of NV by two doses of free chlorine (1 and 5mg/L) at pH 6 and 5 degrees C based on two RT-PCR assay...
متن کاملEvaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater.
Human noroviruses (NoVs) are a significant cause of nonbacterial gastroenteritis worldwide, with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate models amenable to cell culture to predict NoV inactivation. The NoV surrogates murine NoV (MNV), feline calicivirus (F...
متن کاملInactivation of Norwalk virus in drinking water by chlorine.
Norwalk virus in water was found to be more resistant to chlorine inactivation than poliovirus type 1 (LSc2Ab), human rotavirus (Wa), simian rotavirus (SA11), or f2 bacteriophage. A 3.75 mg/liter dose of chlorine was found to be effective against other viruses but failed to inactivate Norwalk virus. The Norwalk virus inoculum remained infectious for five of eight volunteers, despite the initial...
متن کاملSunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers.
Sunlight inactivation of poliovirus type 3 (PV3), adenovirus type 2 (HAdV2), and two bacteriophage (MS2 and PRD1) was investigated in an array of coastal waters to better understand solar inactivation mechanisms and the effect of natural water constituents on observed inactivation rates (k(obs)). Reactor scale inactivation experiments were conducted using a solar simulator, and k(obs) for each ...
متن کاملChlorination of indicator bacteria and viruses in primary sewage effluent.
Wastewater disinfection is used in many countries for reducing fecal coliform levels in effluents. Disinfection is therefore frequently used to improve recreational bathing waters which do not comply with microbiological standards. It is unknown whether human enteric viruses (which are responsible for waterborne disease) are simultaneously inactivated alongside fecal coliforms. This laboratory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 7 شماره
صفحات -
تاریخ انتشار 2003